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stantially correct. 
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Seven-membered carbocycles occur among many classes of 
natural products. Most commonly, the seven-membered ring is 
bound to at least one additional ring of another size. Especially 
well-known examples are the guaianes and pseudoguaianes,1 but 
other cases include the himachalenes (e.g., a-himachalene, I),2 

colchicine (2),3 and the phorbol esters (e.g., 3).4 Because of the 
importance of these compounds, many methods have been devised 
for the construction of cycloheptane derivatives.5 However, we 
now report the very direct formation of a tricyclic cyclo-
heptanone-containing system in a one-pot reaction sequence, which 
is based upon the condensation of an enolate with a cyclopropanone 
derivative and which apparently employs the homoenolate re­
activity of a cyclopropanoxide intermediate.6 

CH3O 

AoHhJ 

Reaction of the readily available cyclopropanone ethyl hemi-
acetal (4)7 with methylmagnesium bromide followed by the ad­
dition of lithium cyclohexenolate affords a mixture of products 
composed of the formal cyclopropanone adduct 5 in 14% yield 
and, much more interestingly, the tricyclic product 6 in 67% yield 
(eq 1). A small amount (3%) of starting material 4 is recovered, 

(1) (a) Nozoe, S. In Natural Products Chemistry; Nakamishi, K., Goto, 
T., Ito, S., Natori, S., Nozoe, S., Eds.; Academic Press: New York, 1974; 
Vol. 1, pp 121-129. (b) Fischer, N. H.; Olivier, E. J.; Fischer, H. D. Fortschr. 
Chem. Org. Naturst. 1979, 38, 47. (c) Heathcock, C. H.; Graham, S. L.; 
Pirrung, M. C; Plavac, F.; White, C. T. In The Total Synthesis of Natural 
Products; ApSimon, J., Ed.; Wiley: New York, 1983; Vol. 5, pp 347-377. 

(2) (a) Joseph, T. C; Dev, S. Tetrahedron 1968, 24, 3809. (b) Piers, E.; 
Ruediger, E. H. Can. J. Chem. 1983, 61, 1239. 

(3) (a) Capraro, H. G.; Brossi, A. In The Alkaloids; Brossi, A., Ed.; 
Academic Press: Orlando, FL, 1984; Vol. 23, pp 1-70. (b) Boger, D. L.; 
Brotherton, C. E. J. Org. Chem. 1985, 50, 3425 and the numerous references 
cited therein. 

(4) (a) Cassady, J. M.; Suffness, M. In Anticancer Agents Based on 
Natural Product Models; Cassady, J. M., Douros, J. D., Eds.; Academic 
Press: New York, 1980. (b) Evans, F. J.; Taylor, S. E. Fortschr. Chem. Org. 
Naturst. 1983, 44, 1 (especially pp 27-57). (c) Ebeling, J. G.; Vandenbark, 
G. R.; Kuhn, L. J.; Ganong, B. R.; Bell, R. M.; Niedel, J. E. Proc. Nat. Acad. 
Sci. U.S.A. 1985, 82, 815. 

HO < 
(I)CH3MgBf, 

OB THF, O0C 

-7»to+25«C 

l/f-
H 

O 

--£-OH 

£ (67%) 

(1) 

but other components, present in trace quantities in the reaction 
mixture, have not been identified. 

Determination of the structure of product 6 was initially dif­
ficult, even with the use of 300-MHz 1H NMR and europium shift 
reagent studies. However, the 1H NMR spectrum obtained at 
600 MHz is sufficiently resolved to permit assignment of the 
indicated structure.8 Subsequent single-crystal X-ray diffraction 
studies (Figure 1) confirm this assignment.9 

In order to probe the pathway by which 6 is formed, we have 
done a number of further experiments, the most important of 
which are summarized here. When the simple adduct 5 is isolated 
from the original reaction mixture, purified, and then subjected 
to further reaction with methylmagnesium bromide and lithium 
cyclohexenolate, tricyclic 6 is obtained in 80% yield (eq T). 
Silylation of adduct 5 to give 7 followed by reaction with lithium 
cyclohexenolate permits isolation of the further adducts 8-10 (eq 
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3), although we have yet to find suitable conditions for conversion 
of 8 or 9 into 6. The homoenolate reactivity of these systems is 
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clearly demonstrated by the cleavage of adduct 5 to give the ethyl 
ketone 11 (eq 4). Reaction of the silyl ether 7 with tetra-n-bu-
tylammonium fluoride also gives ketone 11. 

Based upon the above observations, we propose the pathway 
shown in Scheme I for formation of tricyclic product 6. Mag­
nesium chelation apparently plays a key role in that when control 
experiments of the types described above are done in the absence 

fi 

of magnesium species, formation of 6 is greatly diminished or even 
fails completely. Note that the conformations that we have chosen 
for the intermediates account for the overall stereochemistry of 
the reaction sequence. 

In conclusion, we have discovered a pathway for the very direct 
construction of complex cycloheptanone-containing systems. The 
utility of this reaction sequence is potentially very great if two 
different enolates, either of which may be generated from cyclic 
or acyclic ketones, can be used sequentially (eq 5). Our further 
efforts are being directed toward this generalization of the an-
nulation procedure.12 
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